Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Raj Pal Sharma, ${ }^{\text {a }}$ Rajni Sharma, ${ }^{\text {a }}$

 Ritu Bala ${ }^{a}$ and Andrew D. Bond ${ }^{b}$${ }^{\text {a }}$ Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

Correspondence e-mail:
rpsharmapu@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.015$
$w R$ factor $=0.041$
Data-to-parameter ratio $=26.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Second-sphere coordination in anion binding: trans-bis(ethylenediamine- $\kappa^{2} N, N^{\prime}$)dinitrocobalt(III) periodate

In the title complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]\left(\mathrm{IO}_{4}\right)$, the cations are situated on two sets of inversion centres and are linked by pairs of complementary $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into columns arranged in an approximately hexagonal manner. The periodate anions can be envisaged as occupying triangular hollows above and below approximate hexagonal close-packed layers of trans-bis(ethylenediamine- $\kappa^{2} N, N^{\prime}$)dinitrocobalt(III) cations.

Comment

In the course of studies to explore cobalt(III) complexes as potential anion receptors, we have recently reported the crystal structures of several salts of trans-dinitrobis(ethylene-diamine- N, N^{\prime})cobalt(III), including $\left[\text { trans }-\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$ dichromate and saccharinate (Sharma, Sharma, Bala \& Venugopalan, 2005; Sharma, Sharma, Bala, Quiros \& Salas, 2005). The $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cation has also been characterized in the crystal structures of numerous other complex salts. The cis isomer of the cation is most prevalent among these, having been observed, for example, in combination with halide anions (Bernal, 1985; Frederiksen et al., 1988), polyatomic anions, such as nitrite (Bernal et al., 1990; Marsh, 1997), and organic anions, such as malate and tartrate (Sun et al., 1998; Frederiksen et al., 1988; Sun et al., 2000). The trans isomer has been observed less frequently, in combination with iodide and thiocyanate (Bernal \& Cetrullo, 1986), and with nitrate (Bortin, 1976). Notably, in the context of this report, the trans isomer has previously been characterized in combination with the tetrahedral anions perchlorate and tetrafluoroborate, BF_{4}^{-}. The perchlorate salt has been reported on two occasions. One structure is isostructural with the BF_{4}^{-} salt, space group $P \overline{1}, a=6.718$ (1), $b=13.595$ (1) and $c=$ 15.637 (1) \AA, and $\alpha=114.015$ (4), $\beta=95.196$ (3) and $\gamma=$ 94.984 (3) ${ }^{\circ}$, with $Z=4$ (Maxcy \& Turnbull, 1999). A second structure has also been suggested, in space group $P \overline{1}$, with $a=$ 6.581 (2), $b=8.274$ (1) and $c=12.660$ (3) \AA, and $\alpha=77.28$ (2), $\beta=76.58$ (2) and $\gamma=75.20(2)^{\circ}$, with $Z=2$ (Bernal et al., 1999). The two structures appear to be identical: transformation of the Bernal structure by the matrix ($100,01-1$, -111) gives $a=6.581, b=13.513$ and $c=15.864 \AA$, and $\alpha=$ 113.76, $\beta=95.53$ and $\gamma=93.50^{\circ}$. In the smaller unit cell, the perchlorate anions display orientational disorder, which is mostly resolved on moving to the larger cell. The title periodate complex, $\left[\text { trans }-\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}\left(\mathrm{IO}_{4}^{-}\right)$, (I) (Fig. 1), exhibits a structure different from that of the perchlorate and BF_{4}^{-}salts.

Received 18 April 2005 Accepted 19 April 2005 Online 30 April 2005

The structure of (I) contains $\left[\text { trans- } \mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cations situated on two sets of inversion centres. The cations may be envisaged to lie in columns along [01 $\overline{1}$], linked by pairs of complementary $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2). The columns are arranged in an approximately hexagonal manner, so that the overall arrangement of the cations approximates primitive hexagonal. Considering the structure in terms of hexagonal close-packed layers of [trans$\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cations in $(01 \overline{1})$, the periodate anions occupy adjacent triangular hollows along [100], so that every second row of hollows is filled (Fig. 3). The positions occupied are those lined by NH_{2} groups, which form hydrogen bonds to the O atoms of the periodate anions (Table 2). The periodate anions themselves adopt face-to-face staggered arrangements across centres of inversion, with $\mathrm{I} 1 \cdots \mathrm{I} 1^{\mathrm{i}}$ and $\mathrm{I} 1 \cdots \mathrm{I} 1^{\mathrm{ii}}$ separations of 4.1448 (2) and 4.2567 (2) \AA, respectively [symmetry codes: (i) $2-x, 1-y,-z$, (ii) $1-x, 1-y,-z]$.

The second-sphere interactions of the cation in (I) differ considerably from those of the comparable perchlorate salt, $\left[\text { trans- } \mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}\left(\mathrm{ClO}_{4}^{-}\right)$. Considering the structure of Maxcy \& Turnbull (1999), the nitro groups bridge $\mathrm{NH}_{2} \cdots \mathrm{NH}_{2}$ edges of adjacent $\left[\text { trans }-\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cations, in an interaction similar to that observed between $\left[\text { cis-Co }(\mathrm{en})_{2}\left(\mathrm{~N}_{3}\right)_{2}\right]^{+}$ and the picrate anion (Sharma, Sharma, Bala \& Bond, 2005). These interactions link the cations into approximately hexagonal close-packed layers in (011). In the case of [trans-$\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}\left(\mathrm{ClO}_{4}^{-}\right)$, the perchlorate anions can be envisaged to occupy adjacent pairs of triangular hollows, bridging the $\mathrm{NH}_{2} \cdots \mathrm{NH}_{2}$ edges of each $\left[\text { trans- } \mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cation (Fig. 4), with a $\mathrm{Cl} \cdots \mathrm{Cl}$ separation of $5.161 \AA$ within each pair.

Experimental

The complex salt $\left[\right.$ trans- $\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$ was prepared according to the literature method of Holtzclaw et al. (1953). [trans-Co(en) 2^{-} $\left.\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}(1 \mathrm{~g}, 0.003 \mathrm{~mol})$ was dissolved in water $(50 \mathrm{ml})$ in a beaker. In a second beaker, sodium periodate $(0.6425 \mathrm{~g}, 0.003 \mathrm{~mol})$ was dissolved in water $(25 \mathrm{ml})$. The solutions were mixed and yellow crystals appeared after 1 h . The complex salt is sparingly soluble in acetone and fairly soluble in dimethylsulfoxide, but insoluble in chloroform. Elemental analysis, found: Co 12.64, C 10.40, H 4.00, N 18.05%; calculated for $\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{CoIN}_{6} \mathrm{O}_{8}$: Co 12.76, C 10.38, H 3.46, N 18.17%.

Figure 1
The ions in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x,-y,-z$.]

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]\left(\mathrm{IO}_{4}\right)$
$M_{r}=462.06$
Triclinic, $P \overline{1}$
$a=7.3556(4) \AA$
$b=10.1773(5) \AA$
$c=10.3602(5) \AA$
$\alpha=79.123(2)^{\circ} \AA$
$\beta=74.383(2)^{\circ}{ }^{\circ}$
$\gamma==70.125(2)^{\circ}$
$V=698.39(6) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.197 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6850 \\
& \quad \text { reflections } \\
& \theta=3.1-33.2^{\circ} \\
& \mu=3.49 \mathrm{~mm}^{-1} \\
& T=180(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.28 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

(011)
Figure 2
A projection of the structure of (I) along [100], showing the [trans$\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cations linked into columns via complementary pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (shown as dashed lines). H atoms bound to C atoms have been omitted for clarity.

Figure 3
A projection of the structure of (I) on to a single layer of [trans$\left.\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cations in $(01 \overline{1})$. Periodate anions occupy only the triangular hollows lined by NH_{2} groups; those above the plane are shaded grey and those below the plane are shaded black. H atoms have been omitted.

Data collection

Bruker Nonius X8 APEX-II CCD area-detector diffractometer Thin-slice ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.429, T_{\text {max }}=0.498$
7750 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.041$
$S=1.11$
4857 reflections
184 parameters
H-atom parameters constrained

4857 independent reflections
4633 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=33.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-15 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0191 P)^{2}\right. \\
& \quad+0.1654 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.55 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.78 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 3$	$1.9388(11)$	$\mathrm{Co} 2-\mathrm{N} 6$	$1.9317(11)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.9441(11)$	$\mathrm{Co} 2-\mathrm{N} 4$	$1.9527(11)$
$\mathrm{Co} 1-\mathrm{N} 1$	$1.9552(10)$	$\mathrm{Co} 2-\mathrm{N} 5$	$1.9572(11)$
$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	180	$\mathrm{~N} 6^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{N} 6$	180
$\mathrm{~N} 3-\mathrm{Co} 1-\mathrm{N} 2$	$89.96(5)$	$\mathrm{N} 6-\mathrm{Co} 2-\mathrm{N} 4$	$90.95(5)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	$90.04(5)$	$\mathrm{N} 6-\mathrm{Co} 2-\mathrm{N} 4^{\mathrm{ii}}$	$89.05(5)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	180	$\mathrm{~N} 4-\mathrm{Co} 2-\mathrm{N} 4^{\mathrm{ii}}$	180
$\mathrm{~N} 3-\mathrm{Co} 1-\mathrm{N} 1$	$88.61(5)$	$\mathrm{N} 6-\mathrm{Co} 2-\mathrm{N} 5$	$89.12(5)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$91.39(5)$	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{N} 5$	$85.70(5)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$85.94(5)$	$\mathrm{N} 6-\mathrm{Co} 2-\mathrm{N} 5^{\mathrm{ii}}$	$90.88(5)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$94.06(5)$	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{N} 5^{\mathrm{ii}}$	$94.30(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{~N} 5-\mathrm{Co} 2-\mathrm{N} 5^{\mathrm{ii}}$	180

[^1]

Figure 4
A projection of $\left[\text { trans }-\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}\left(\mathrm{ClO}_{4}^{-}\right)$on to a single layer of [trans-Co(en $\left.)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$cations in (011). Perchlorate anions occupy adjacent pairs of triangular hollows, bridging $\mathrm{NH}_{2} \cdots \mathrm{NH}_{2}$ edges; those above the plane are shaded grey and those below the plane are shaded black. H atoms have been omitted.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\text {i }}$	0.92	2.24	$3.0390(15)$	145
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots 3^{\text {iii }}$	0.92	2.12	$2.9297(15)$	146
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots 4^{\text {iv }}$	0.92	2.37	$3.1347(15)$	141
$\mathrm{~N} 4-\mathrm{H} 4 D \cdots 1^{\text {v }}$	0.92	2.33	$2.9258(15)$	122
$\mathrm{~N} 2-\mathrm{H} 2 D \cdots \mathrm{O} 2^{\text {vi }}$	0.92	2.60	$3.3389(16)$	138
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O} 2^{\text {vii }}$	0.92	2.20	$2.9943(16)$	144
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{O} 1^{\text {vi }}$	0.92	2.39	$3.0244(16)$	126
$\mathrm{~N} 4-\mathrm{H} 4 C \cdots \mathrm{O}^{\text {viii }}$	0.92	2.34	$3.0809(17)$	137
$\mathrm{~N} 4-\mathrm{H} 4 D \cdots 4^{\text {viii }}$	0.92	2.54	$3.3267(15)$	144

Symmetry codes: (i) $-x,-y+1,-z+1$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+1,-y+1,-z ;$ (v) $-x+1,-y,-z$; (vi) $x-1, y, z$; (vii) $x, y+1, z$; (viii) $x, y-1, z$.

H atoms were placed in calculated positions and allowed to ride during subsequent refinement, with $\mathrm{N}-\mathrm{H}=0.92 \AA$ and $\mathrm{C}-\mathrm{H}=$ $0.99 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: APEX2 (Bruker Nonius, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

RS and RPS gratefully acknowledge financial support from the UGC [grant No. F.12-38/2003(SR)]. ADB is grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet (Denmark) for provision of the X -ray equipment.

References

Bernal, I. (1985). Inorg. Chim. Acta, 96, 99-110.
Bernal, I., Cai, J., Somoza, F. \& Massoud, S. S. (1999). J. Coord. Chem. 46, 533550.

Bernal, I. \& Cetrullo, J. (1986). Inorg. Chim. Acta, 122, 213-220.
Bernal, I., Cetrullo, J. \& Berhane, S. (1990). Struct. Chem. 1, 361-366.
Bortin, O. (1976). Acta Chem. Scand. A, 30, 657-660.
Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker Nonius (2003). APEX2. Version 1.0-8. Bruker Nonius BV, Delft, The Netherlands.
Frederiksen, J. M., Horn, E., Snow, M. R. \& Tiekink, E. R. T. (1988). Aust. J. Chem. 41, 1305-1314.
Holtzclaw, H. F., Sheetz, D. P. \& McCarty, B. D. (1953). Inorg. Synth. 4, 176179.

metal-organic papers

Marsh, R. E. (1997). Acta Cryst. B53, 317-322.
Maxcy, K. R. \& Turnbull, M. M. (1999). Acta Cryst. C55, 1984-1986.
Sharma, R. P., Sharma, R., Bala, R. \& Bond, A. D. (2005). Acta Cryst. C61. In the press.
Sharma, R. P., Sharma, R., Bala, R., Quiros, M. \& Salas, J. M. (2005). J. Chem. Cryst. In the press.
Sharma, R. P., Sharma, R., Bala, R. \& Venugopalan, P. (2005). J. Coord. Chem. In the press.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sun, M., Liu, X.-L., Liu, Y.-Q., Cheng, Q.-Y. \& Miao, F.-M. (1998). Chin. J. Struct. Chem. 17, 405-408.
Sun, M., Zhou, W.-H., Liu, Y.-Q., Zhao, R., Yu, M., Liu, X.-L. \& Miao, F.-M. (2000). Chin. J. Struct. Chem. 19, 359-362.

[^0]: (C) 2005 International Union of Crystallography

[^1]: Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y,-z$.

